Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.09.22272113

ABSTRACT

Between November 2021 and February 2022, SARS-CoV-2 Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events. We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant. Our sequencing protocol uses hybridization capture and is thus less subject to artifacts observed in amplicon-based approaches that may lead to spurious signals for recombinants. We identified 20 co-infections, one of which displayed evidence of a low recombinant viral population. We also identified two independent cases of infection by a Delta-Omicron recombinant virus, where 100% of the viral RNA came from one clonal recombinant. In both cases, the 5'-end of the viral genome was from the Delta genome, and the 3'-end from Omicron, though the breakpoints were different. Delta-Omicron recombinant viruses were rare, and there is currently no evidence that the two Delta-Omicron recombinant viruses identified are more transmissible between hosts compared to the circulating Omicron lineages.


Subject(s)
Coinfection
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.06.21251159

ABSTRACT

As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Subject(s)
COVID-19 , Protein S Deficiency
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248814

ABSTRACT

Recently, multiple novel strains of SARS-CoV-2 have been found to share the same deletion of amino acids H69 and V70 in the virus S gene. This includes strain B.1.1.7 / SARS-CoV-2 VUI 202012/01, which has been found to be more infectious than other strains of SARS-CoV-2, and its increasing presence has resulted in new lockdowns in and travel restrictions leaving the UK. Here, we analyze 2 million RT-PCR SARS-CoV-2 tests performed at Helix to identify the rate of S gene dropout, which has been recently shown to occur in tests from individuals infected with strains of SARS-CoV-2 that carry the H69del/V70del mutation. We observe a rise in S gene dropout in the US starting in early October, with 0.25% of our daily SARS-CoV-2-positive tests exhibiting this pattern during the first week. The rate of positive samples with S gene dropout has grown slowly over time, with last week exhibiting the highest level yet, at 0.5%. Focusing on the 14 states for which we have sufficient sample size to assess the frequency of this rare event (n>1000 SARS-CoV-2-positive samples), we see a recent expansion in the Eastern part of the US, concentrated in MA, OH, and FL. However, we cannot say from these data whether the S gene dropout samples we observe here represent the B.1.1.7. strain. Only with an expansion of genomic surveillance sequencing in the US will we know for certain the prevalence of the B.1.1.7 strain in the US.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.07.20208702

ABSTRACT

It is increasingly recognized that SARS-CoV-2 can produce long-term complications after recovery from the acute effects of infection. Here, we report the analysis of 32 self-reported short and long-term symptoms in a general adult population cohort comprised of 233 COVID-19+ cases, 3,652 SARS-CoV-2-negative controls, and 17,474 non-tested individuals. The majority of our COVID-19+ cases are mild, with only 8 of the 233 COVID-19+ cases having been hospitalized. Our results show that 43.4% of COVID-19+ cases have symptoms lasting longer than 30 days, and 24.1% still have at least one symptom after 90 days. These numbers are higher for COVID-19+ cases who were initially more ill, 59.4% at 30 days and 40.6% at 90 days, but even for very mild and initially asymptomatic cases, 14.3% have complications persist for 30 days or longer. In contrast, only 8.6% of participants from the general untested population develop new symptoms lasting longer than 30 days due to any illness during the same study period. The long-term symptoms most enriched in those with COVID-19 are anosmia, ageusia, difficulty concentrating, dyspnea, memory loss, confusion, headache, heart palpitations, chest pain, pain with deep breaths, dizziness, and tachycardia. We additionally observe that individuals who had an initial symptom of dyspnea are significantly more likely to develop long-term symptoms. Importantly, our study finds that the overall level of illness is an important variable to account for when assessing the statistical significance of symptoms that are associated with COVID-19. Our study provides a baseline from which to understand the frequency of COVID-19 long-term symptoms at the population level and demonstrates that, although those most likely to develop long-term COVID-19 complications are those who initially have more severe illness, even those with mild or asymptomatic courses of infection are at increased risk of long-term complications.


Subject(s)
Memory Disorders , Pain , Headache , Dyspnea , Chest Pain , Dizziness , Olfaction Disorders , COVID-19 , Heart Diseases , Confusion , Tachycardia
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20177246

ABSTRACT

Epidemiological and genetic studies on COVID-19 are hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict potential COVID-19 cases using cross-sectional self-reported disease-related symptoms. Using a previously reported COVID-19 prediction model, we show that it is possible to conduct a GWAS on predicted COVID-19 which benefits from a larger sample size in order to gain new insights into the genetic susceptibility of the disease. Furthermore, we find suggestive evidence that genetic variants for other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. Our findings demonstrate the added value of using self-reported symptom assessments to quickly monitor novel endemic viral outbreaks in a scenario of limited testing. Should there be another outbreak of a novel infectious disease, then we recommend repeatedly collecting data of disease-related symptoms.


Subject(s)
COVID-19 , Communicable Diseases
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.21.262329

ABSTRACT

SARS-CoV-2 infection induces a T cell response that most likely contributes to virus control in COVID-19 patients, but may also induce immunopathology. Until now, the cytotoxic T cell response has not been very well characterized in COVID-19 patients. Here, we analyzed the differentiation and cytotoxic profile of T cells in 30 cases of mild COVID-19 during acute infection. SARS-CoV-2 infection induced a cytotoxic response of CD8+ T cells, but not CD4+ T cells, characterized by the simultaneous production of granzyme A and B, as well as perforin within different effector CD8+ T cell subsets. PD-1 expressing CD8+ T cells also produced cytotoxic molecules during acute infection indicating that they were not functionally exhausted. However, in COVID-19 patients over the age of 80 years the cytotoxic T cell potential was diminished, especially in effector memory and terminally differentiated effector CD8+ cells, showing that elderly patients have impaired cellular immunity against SARS-CoV-2. Our data provides valuable information about T cell responses in COVID-19 patients that may also have important implications for vaccine development. ImportanceCytotoxic T cells are responsible for the elimination of infected cells and are key players for the control of viruses. CD8+ T cells with an effector phenotype express cytotoxic molecules and are able to perform target cell killing. COVID-19 patients with a mild disease course were analyzed for the differentiation status and cytotoxic profile of CD8+ T cells. SARS-CoV-2 infection induced a vigorous cytotoxic CD8+ T cell response. However, this cytotoxic profile of T cells was not detected in COVID-19 patients over the age of 80 years. Thus, the absence of a cytotoxic response in elderly patients might be a possible reason for the more frequent severity of COVID-19 in this age group in comparison to younger patients.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.23.255364

ABSTRACT

Influenza virus and coronavirus, belonging to enveloped RNA viruses, are major causes of human respiratory diseases. The aim of this study was to investigate the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan ({lambda}-CGN), purified from marine red algae. Cell culture-based assays revealed that the macromolecule efficiently inhibited both influenza A and B viruses, as well as currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with EC50 values ranging from 0.3-1.4 g/ml. No toxicity to host cells was observed at concentrations up to 300 g/ml. Plaque titration and western blot analysis verified that {lambda}-CGN reduced expression of viral proteins in cell lysates and suppressed progeny virus production in culture supernatants in a dose-dependent manner. This polyanionic compound exerts antiviral activity by targeting viral attachment to cell surface receptors and preventing entry. Moreover, intranasal administration to mice during influenza A viral challenge not only alleviated infection-mediated reductions in body weight but also protected 60% of mice from virus-induced mortality. Thus, {lambda}-CGN could be a promising antiviral agent for preventing infection by several respiratory viruses.


Subject(s)
Respiratory Tract Diseases , Drug-Related Side Effects and Adverse Reactions
SELECTION OF CITATIONS
SEARCH DETAIL